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An improved formulation for the nucleation rate j of a generalized sequential process is presented. The 
topological nature of linear chains was formulated by introducing activation energy for chain sliding 
diffusion within crystals. It is shown that when chain sliding diffusion is easy extended chain crystals (ECC) 
will be formed from folded chain crystals (FCC) by lamellar thickening, whereas when it is difficult FCCs 
will be formed, which shows the origin of ECC and FCC. It indicates that there is no essential difference 
in formation mechanism between FCC and ECC. It is predicted that polymers crystallized from the melt 
into hexagonal form will change continuously from FCC to ECC with increasing crystallization temperature. 
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INTRODUCTION 

The previous paper 1 presented a unified theory 
(henceforth referred to as UI) which explained the origin 
of formation of folded chain crystals (FCC) and extended 
chain crystals (ECC) of linear chain polymers. UI also 
explained the dependence of lamellar thickness of FCC 
on the degree of supercooling AT. UI was improved from 
the previous theory 2 based on experimental results on 
extended chain single crystals (ECSC) of polyethylene 
(PE) under high pressure 3'4. UI was an extension of 
kinetic theories given by Turnbull and Fisher 5 and by 
Frank and Tosi (FT) 6. 

UI started from the viewpoint that a nucleus will tend 
to grow two-dimensionally due to the thermodynamical 
driving force. Then UI introduced a topological 
viewpoint that the sliding diffusion of a chain within a 
nucleus plays an essential role. UI showed that when 
chain sliding diffusion is easy, the nucleation rate for a 
two-dimensionally growing nucleus becomes dominant, 
whch gives rise to ECC type growth. On the contrary, 
when chain sliding diffusion is difficult, the nucleation 
rate for a one-dimensionally growing nucleus becomes 
dominant, which gives rise to FCC type growth. 

Recently, Hikosaka e t  al. succeeded in providing 
experimental evidence 7 on PE which confirmed the 
viewpoints of UI mentioned above. They showed that 
PE crystallizes first into FCC type lamellae, which then 
thicken into ECC type lamellae, when PE is crystallized 
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from the melt into the disordered hexagonal phase in 
which chains can easily slide within a lamella. They also 
showed that extended chain single crystals (ECSC) can 
be formed and grow only in the hexagonal phase and 
not in the ordered orthorhombic phase. 

The former confirmed Wunderlich and Davison's 
suggestion that ECC is formed by a lamellar thickening 
mechanism s. The latter also confirmed Bassett and 
Piermarini's suggestion that there should be a close 
relation between the formation of ECC and FCC and 
the hexagonal and orthorhombic phases in PE 9. The 
evidence of Hikosaka e t  al.  7 gave molecular bases to the 
lamellar thickening mechanism and to the relation 
between the morphologies of FCC and ECC and the 
phases. In other words, this experimental evidence clearly 
showed the important role of chain sliding diffusion 
within solids (nucleus or lamella) in the formation of 
FCC and ECC which was stressed in UI. 

However, two insufficient points remained in UI. First, 
the formulation of the nucleation rate, j, (UI equation 
(15)) was complex. Second, the definition of the average 
of the two activation energies (denoted as AE) necessary 
for two kinds of diffusion (diffusion of a chain in liquid 
or solution and sliding diffusion of a chain within a 
nucleus) was too simple. The oversimplification gave too 
large a value of AE for FCC. For example, AE became 
as large as 100(kT) for a stem 100A long. 

The aims of this paper are: 

(1) to improve the formulation ofj by deriving a simple 
form for a generalized sequential process and to redefine 
AE on the basis of the kinetic nature; 

(2) to show that when a nucleus can thicken and grow 
two-dimensionally by chain sliding diffusion, a lamella 
can also thicken and grow three-dimensionally by chain 
sliding diffusion, which will finally result in the formation 
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of ECC; the reverse (which will result in formation of 
FCC) will also be shown to be true; 

(3) to show more clearly than UI did that the origin 
of formation of FCC and ECC is related to the ease or 
difficulty of chain sliding diffusion within crystals (nuclei 
or lamellae); 

The paper concludes that there is no essential difference 
between the formation mechanisms of FCC and ECC 
and presents a prediction that ECC will be formed from 
FCC by lamellar thickening via chain sliding diffusion 
when polymers crystallize into the hexagonal (or 
pseudo-hexagonal) form and that FCC will be formed 
when polymers crystallize into another ordered form such 
as orthorhombic or monoclinic. 

It will be shown tha t j  is determined by two competing 
factors only, a thermodynamical and a kinetic factor. 
The origin of the formation of FCC and ECC will be 
shown to be related to which factor becomes dominant. 
It will be shown that j can be rewritten as a product of 
two probabilities, the probability of generating a critical 
nucleus and the survival probability of the nucleus. 

It will also be shown that the formulation ofj  obtained 
in this work is apparently similar to that given in previous 
theories by Lauritzen and Hoffman (LH) t° and FT. But 
the essential difference between them will be shown to 
be related to the topological viewpoint, i.e. the effect of 
chain sliding diffusion, which plays an important role in 
this work. In other words, the physical meaning of AE 
in this and the previous theories is different. AE in this 
work includes the activation energy both for chain sliding 
diffusion within crystals (nucleus or lamella) and for 
diffusion within the melt or solution, while AE in both 
LH and FT theories only includes the activation energy 
for diffusion within the melt or solution. 

To achieve aim 2, it will be sufficient in this paper to 
obtain conditions for two- (or one-) dimensional growth 
of a nucleus to clarify the condition of formation of ECC 
(or FCC). 

GENERALIZED NUCLEATION RATE j 

Improved formulation of nucleation rate j 
We will use the same 'generalized' linear sequential 

process as used in UI. 'Generalized' means that AE is a 
function of the stage number m, which will be discussed 
below. The process is illustrated in Figure 1. Let us start 
from the general form of the nucleation rate j given by 
FT equation (13): 

~0flO j -  ~ (1) 

m=0 i=0 

~,, and fl= are the forward and backward transition rates 
from the mth stage and are given by UI equation (12). 
Note that the summation in UI equation (14) can be 
written as (see UI Figure 2) 

Af~ = G* - G,. (2) 
/=2 

where Af~ is the difference in the free energy for forming 
a nucleus between the ( i -1 ) th  stage and the ith stage 
defined by UI equation (13), Gm is the free energy for 
forming a nucleus of the mth stage and G*= G,, for a 
critical nucleus (see Figure 1). In Figure 1, N is the total 
number of repeating units within a nucleus. 

Gm AEm / 
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Figure 1 Generalized linear sequential process where AE= is a function 
of m. Actual maximum activation barrier is indicated by open circle 
and arrow 

Substitution of UI equations (13) and (14) and 
equation (2) into equation (1) gives 

j= aorlo/ A (3) 

where ~/o is a constant and 

A = 2 +  ~ (h/kT)ao exp{G~/kT+AEm/k(T-Tg)} (4) 
m=2 

Here h is Plancks constant, kT is the thermal energy at 
a temperature T, AE= = AE (activation energy necessary 
for diffusion) from the ruth to the (m + 1)th stage (Figure 1 ) 
and Tg is the glass transition temperature. 

If we make the approximation that 

AE o - AE 1 (5) 

then A can be approximated as follows: 

A ~- ~ (h/kT)ct o exp{G,./kT+ AE~/k(T- Tg)} 
m=O 

+ (1 -- %/fix) (6) 

Evidently, in this problem, 

A>>I 

and 

~o/fll << 1 (7) 

Combination of equations (6) and (7) gives 

A ~- ~ (h/kT)ao exp{Gm/kT+AEm/k(T- Tg)} (8) 
m=O 

Substitution of equation (8) into equation (3) ultimately 
gives a new and simple formulation for j: 

k cO --1 

Equation (9) shows that j is determined by only two 
factors, Gm and AE,,. G= is a decreasing function of m 
for m > 1 and will become negative when m becomes large 
(see Figure 1). AE,, is, on the contrary, always a positive 
constant or a positive increasing function of m for any 
m (Figure 1). Therefore, the two factors compete. 

G,~ is derived from a thermodynamic procedure, as 
shown in UI Appendixes I and I1, whereas AEm is 
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determined by the manner of diffusion. Therefore, the 
nature of AE m is essentially kinetic. Thus we conclude 
that the nucleation ra te j  is determined by two competing 
factors, a thermodynamic factor G m and a kinetic factor 
AEm. In this paper, the conclusion reached in UI will be 
confirmed: ECC will grow when the thermodynamic 
factor is dominant; FCC will grow when the kinetic factor 
is dominant. 

Observable crystals should clearly be formed through 
the nucleus that gives the largest j. Therefore, we have 
to find such a nucleus to predict which type of crystals 
will be formed. This is why j is so important in the study 
of crystallization kinetics. 

Physical meaning of j 
We will rewrite the formula for j to make its physical 

meaning clear: 

j = tlo(kT/h)exp[ - {G~/kT+ AE~/k(T-  T~)}max']P s (10) 

where Ps is a survival probability of a nucleus defined as 

Ps = { m~= o eXp[ { Gm/k T + AEm/k( T -  Tg)} 

-- {G~kT+ AE., /k(T- Tg)}mj (11) 

Equation (10) is a new basic formulation of j 
corresponding to UI equation (15). Equation (10) shows 
that j is given by a product of two probabilities, the 
probability of passing through the maximum activation 
barrier of formation of a nucleus, exp[-{G~/kT+ 
AE,Jk(T--Tg)}mj, and the survival probability of the 
nucleus, Ps. 

Note here that AE m is generally not always constant 
but is a function of m, which is an important difference 
from the previous theories of Turnbull and Fisher s, FT  
and LH. In this case, the so called critical nucleus cannot 
give a maximum activation barrier in the sequential 
process (see Figure 1). For example, when AEm is an 
increasing function of m, the nucleus which gives the 
maximum activation barrier will become bigger than the 
so called critical nucleus. In Figure1, the former is 
indicated by an open circle at N = Np and the latter by 
a filled circle at N = N*. 

The previous theories s'6'1° clearly correspond to the 
special case AEm=AE=constant. In this case, Np 
becomes equal to N* and equation (10) becomes 

j = rlo(kT/h)exp[- {G*/kT+ AE/k(T-  Tg)}]P s (12) 

which agrees, of course, with the formula given in the 
previous theories s'6'1°. Therefore, in this work j can be 
regarded as a more generalized nucleation rate than the 
j in the previous theories. 

e 

( ( 

~ s u b s t r a t e  

-2Y 

Figure 2 Monolayer nucleus with uneven end surface: (a) definition 
of terms; (b) definition of AEe and AE,, the activation free energies for 
chain sliding diffusion within a nucleus and for reeling from the melt 
or the solution, respectively. U and v are the growth rates parallel and 
normal to the stem axis, respectively 

N U C L E A T I O N  RATE j OF P O L Y M E R  SYSTEM 

End surface free energy ae 
Here we will consider the same monolayer nucleus as 

is given in UI. Figure 2a shows a schematic nucleus with 
n stems, each of which contains I repeating units. I is an 
average number. We will call l (averaged) stem length. 
Both a fold and cilia may be seen on the uneven end 
surface. Figure2b shows a more simplified schematic 
nucleus. It should be more general to consider that the 
end surface of the nucleus is uneven and fluctuated, i.e. 
the position of the folds can always slide and fluctuate. 

This fluctuation effect must give an entropic effect to the 
free energy of the system. Therefore, the entropic effect 
should be included in the end surface free energy a=, 
which is shown in Appendix 1. Equation (A10) in 
Appendix 1 shows that a= can be written as a function 
of side surface free energy tr: 

tr= = 1 /2{El -  kTln(2kT/a)} (13a) 

where Ef is the excess free energy per fold given by 

Ef = q + 2ab(tr/bc) (13b) 

with q the fold energy per fold and a, b and c lattice 
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parameters. Note that ~r= and a are no longer independent 
parameters. Equation (13a) is an improved formulation 
of equation (4.5) in Reference 3. 

Here we will use the same equation for G., as UI 
equations (18) and (16). 

Growth paths of  a nucleus 
The nucleus tends, in general, to grow two- 

dimensionally, as discussed in UI, due to the 
thermodynamic driving force. For two-dimensional 
growth, l has to increase. Here we will call this nuclear 
thickening or thickening of a nucleus, which is just an 
analogy of the well known lamellar thickening. A more 
detailed relation between the two will be shown below. 

To describe two-dimensional growth, we will use the 
same growth path in (l, n) phase space (Figure 3a) as is 
given in UI, 

l = A'n z(~') (14) 

where A' is a constant given from UI relation (21), and 
Z is a parameter related to the path parameter ~o as 
follows: 

I ~o+l -1<o9~<0 
Z(og)= (15a) 

L1/1-e~ 0<o9<1 

Equation (15a) is the same as UI equation (24). From 
equations (14)and (15a), 

( A'n ~+1 -1<~o~<0 
l=  (15b) 

A,nl/1 -,o 0<09< 1 

Some examples of growth paths are shown in Figure 3a. 
Path 1, where 09 ~-0, represents typical two-dimensional 
growth and will give the formation of ECC. Path 2, where 
co _~ - 1, represents typical one-dimensional growth and 
will give the formation of FCC. Thus expression (14) is 
suitable to describe two-dimensional growth. The paths 
assumed in theories by LH and FT and by Point 11, which 
are shown in Figure 3b, are, on the contrary, limited to 
describing one-dimensional growth and cannot describe 
any two-dimensional growth. 

UI showed that c o - 0  for disordered crystals and 09 
decreases to - 1  with increasing order of the crystals. 
The same results will be shown in the latter part of this 
paper. 

Averaged activation energy for diffusion AE., 
A nucleus grows two-dimensionally through two kinds 

of diffusion of chains (see Figure 2b) as has been discussed 
in UI. One is related to the 'reeling in' of a chain from 
the melt or the solution, which is important in increase 
of n. The other is related to the 'sliding diffusion' of a 
chain within the growing nucleus, which is important in 
increase of I. The activation free energies for the two 
types of diffusion are denoted as AE,,., and AE .. . .  
respectively. AEs. m is usually smaller than AE=,,, (see UI 
equation (3)). We will assume the same relation as UI 
equation (6) (see Figure 4), 

AEe, m = xl .... 1¢,,. = Fm (16) 

where x is a kind of friction energy per repeating unit 
caused by interchain friction, l=,,. is an effective chain 
length for the sliding diffusion at the mth stage, lm is the 
stem length at the mth stage and v is a positive exponent 
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Figure 3 Growth paths of a nucleus in (/, n) phase space. - - - ,  Contour 
lines of Gin. (a) Paths from this work. 1 and 2 indicate two- and 
one-dimensional growth, which will give formation of ECC and FCC, 
respectively. (b) Paths from the theories by LH and FT and by Point 11 
for FCC 

which determines the le. l=,m should be shorter than 1,. 
because there may be some point defect along a chain 
as shown in Figure 4. Therefore v should be positive and 
smaller than one. Both x and v are increasing functions 
of the degree of order of the crystal. Here we will assume, 
as assumed in UI, that 

x ~ v  (17) 

They will be simply written as (x, v). In this paper, kTm 
per repeating unit is taken as the unit of x. 
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Table 1, AE m increases rapidly to several tens of kT for 
co~-0, but it remains small (less than a few kT) when 
co ~ -  1. This suggests that thickening of a nucleus is 
possible only for the latter case and nearly impossible 
for the former. If (x, v) is small, as shown in Figure 5b, 
i.e. for set II in Table I, it of course remains small for 
almost any co. This suggests that a nucleus can thicken 
for almost any co. 

Ir Sequential process 
Here we will regard Gm/kTand {G~/kT+ AE~/k(T- Tg)} 

as continuous functions of m. Then the sequential process 
in Figure l can be regarded as composed of two 
continuous curves. The simplified sequential processes 

Table 1 Parameters obtained from analysis of the dependence on the 
degree of supercooling A T o f / a n d  normal growth rate V for FCC and 
ECC of PE 12 

Figure 4 Definition of AEe, activation energy for chain sliding diffusion 
within a crystal (nucleus or lamella) 

The definition of the average of AE,,m and AE=, m, AE m, 
given by UI equation (2) is too simple. AE=,r, and AEs,s 
are mixed in our sequential process. In the kinetic 
process, exp{AE=,,,,/k(T- Tg)} and exp{AE,,s/k(T- Tg)} 
indicate the difficulty of passing through the 
respective activation barriers If exp{AE~ m/k(T- 7".)} >> 
exp{AE, m/k(T- Tg)}, then exp{AE,,/k(T- T~)} should be 
mainly determined only by exp{AE=,m/k(T-~)}, while 
the reverse should be true. This is very characteristic of 
such a kinetic process. Therefore the 'kinetic average' of 
AE s should be defined as 

exp{ Ae~/k( T -  T~)} = p exp{ AE=,~/k( T -  Tg)} 

+ (1 -p)  exp{AE,,mk/(T- Tg)} (18) 

where p is the probability of finding a repeating unit on 
the end surface, which may be related to chain sliding 
diffusion. The physical meaning of p defined by UI 
equation (23) is not clear. Here we will redefine p by 
noticing its meaning mentioned above. From equation 
(AI7) in Appendix 2, we have 

/ { l+ 1/(co+1)}-' - 1 < ~ < o  
(19) 

P= t (2-co) -1 0 < c o <  1 

Thus, AE m is obtained from equations (18) and (19). 
In this paper, the parameter sets I and II listed in 

Tables l and 2 are used. Parameters in Table 1 were 
obtained from our new analysis on normal growth rate 
and lamellar thickness of PE shown in the succeeding 
paper 12 (referred to as UIII). In UIII, it is shown that 
parameter sets I and II correspond to parameters for 
FCC at atmospheric pressure and parameters for ECC 
under high pressure (0.3 GPa) of PE, respectively. 

AE m is shown in Figure 5 as a function of Nm. When 
(x, v) is large, as shown in Figure fa, i.e. for set I in 

Set I Set II 
(FCC at 0.1 MPa) (ECC at 0.3 GPa) 

tr (10-aJm -2) 10.9 3.3 

crc= (10-3Jm -2) 43.9 6.3 

x ( k T  m per 0.66 0.35 
repeating unit) 

=Calculated from Equation (13) 
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Figure 5 AEm as a function of N for two-dimensionally growing 
nucleus (co=0) and for one-dimensionally growing nucleus (co= -0.75): 
(a) large (x, v)=(0.66, 0.66), A T = 2 O K ;  (b) small (x, v)=(0.35, 0.35), 
AT=4K.  The unit of ~c is k T  m per repeating unit 
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Table  2 Lattice constants and thermodynamic parameters for FCC 
and ECC of PE 

Set I Set II 
(FCC at 0.1 MPa) (ECC at 0.3GPa) 

a (10-1°m) 4.5513 "4.2515 
b (10-X°m) 4.1513 "4.9015 
c (10-a°m) 1.2741~ 1.21516 
Tra (K) 41813 50317 
T~ (K) 250 Is 250 (assumed) 
Ag ~ (I0 ~ J m -  ~) 6.48 A T 13 3.23 A T 13,19 

q~ (10-2°J per fold) 2.97 x 102o 

Orthoganol-hexagonal lattice was taken 
b Free energy of fusion calculated by LH equation (28) 1° 
(110) plane was taken 

Gm + AEm {4~0 
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Figure 6 Simplified sequential processes: . . . .  , G , . / k T ;  . . . . .  , 

{(G,./kT) + [AE,./k(T-- Tg)] }/k(T - T~). (a) Large AE,,, i.e. (K, v) = (0.66, 
0.66), AT=20K. (b) Small AE,., i.e. (K, v)=10.35, 0.351, AT=4K 

of folded- and extended-chain crystals." M. Hikosaka 

are illustrated in Figure 6. In Figures 6a and b parameter 
sets I and II in Tables 1 and 2 are used, respectively. 

Note first that in both Figures6a and b the 
thermodynamic curve Gm itself showed the similar 
behaviour. Gm decreases faster with m (for m >  1) for 
two-dimensional ECC type growth (where 09 ~-zero) than 
it does for one-dimensional FCC type growth (where 09 
is small enough, - -  1). This suggests that, from the 
thermodynamic viewpoint, ECC type growth will be 
preferred over FCC type growth. 

Figure 6a shows a typical sequential process for large 
(x, v) where chain sliding is difficult. For  two-dimensional 
growth (where 09-  0), the kinetic barrier of AE,, rapidly 
becomes large with increasing m (see Figure5a), so 
{G,]kT+AEm/k(T-Tg)} becomes much larger with m 
than it does for one-dimensional growth (where 09 - - 1). 
Therefore the latter type growth will become favoured. 
This suggests that when chain sliding diffusion is difficult, 
one-dimensional FCC type growth (corresponding to 
09 - - I) will occur. 

Figure 6b shows another typical sequential process for 
small (x, v) where chain sliding diffusion is easy. As A E  m 
always remains small and constant (Figure 5b) for any 
o9, {G,./kT+ AE,,/k(T-Tg)} is mainly determined by the 
thermodynamic factor G,./kT. This suggests that when 
chain sliding diffusion is easy, two-dimensional type 
growth, i.e. ECC type growth (where 09 ~- 0), will become 
dominant. 

In the next section, these suggestions will be confirmed 
by calculation of j .  

ORIGIN OF FCC AND ECC 

(x, v) dependence of j 
Let us confirm the suggestions in the previous section 

by calculating j given in equation (10). Figure 7 shows 
exp[-{G, , /kT+AEm/k(T-Tg)}mJ,  Ps and j as a 
function of co or l/l*, where l* is I for a critical nucleus. 
The maximum value of N, Nmax, does not greatly affect 
the result if it is sufficiently large. It is sufficient for us 
to assume that 

Nm,./N* = 200 (20) 

Figure 7a is for the typical parameter set I in Tables 1 
and 2 where (x, v) is large (0.66, 0.66). In this case, AEe.m 
becomes large and chain sliding diffusion within the solid 
becomes difficult. Figure 7a indicates that e x p [ -  { G~/k T+ 
AE,,/k(T--Tg)}mj decreases to zero very swiftly with 
increase of 09. Ps, on the other hand, increases rapidly 
from zero and then shows a broad maximum with 
increase of co. As a result, j, which is the product of Ps 
and the exponential function, shows a very sharp 
maximum at 09---- 1, which indicates one-dimensional 
FCC type growth of a nucleus. 

Figure 7b is for small (~c, v), (0.35, 0.35). It is drawn 
by using parameter set II in Tables I and 2. In this case, 
AEe,m becomes small and chain sliding diffusion within 
the solid becomes easy. The figure shows that 
exp[-{Gm/kT+AE,,/k(T-Tg)}max] r e m a i n s  nearly con- 
stant for most of the range of co, i.e. - 1  <o9<0.5,  while 
Ps increases swiftly from zero and then shows a broad 
maximum at 09 = 0. Therefore,j  shows a broad maximum 
at co--~0, which indicates two-dimensional ECC type 
growth of a nucleus. 

The nucleation rates j are summarized in Figure 8 as 
a function of g9 or I/l* for large and small (~:, v), i.e. large 
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of FCC and ECC. Parameters are the same as in Figure 7 

and small AEe, m. Figure8 shows a sharp maximum at 
e~_ - 1 and a broad maximum at 09 _ 0, which indicate 
FCC and ECC type growth of a nucleus, respectively. 

It will be shown in the next section that the two- (one-) 
dimensional ECC (FCC) type growth of a nucleus can 
be regarded as the formation of ECC (FCC). Therefore, 
Figure 8 can be considered to indicate typical conditions 
for formation of ECC and FCC. 

Thus it can be concluded that, when chain sliding 
diffusion is difficult, FCC will be formed, whereas, when 
it is easy, ECC will be formed. This confirms the 
suggestion in the previous section. Figure 8 corresponds 
to UI Figure 7 and FT Figure 1. 

Correspondence of nuclear thickening and lamellar 
thicken&g 

Both this paper and UI stress that a nucleus tends to 
thicken and grow two-dimensionally due to the 
thermodynamic driving force, which has been shown 
above by using the kinetic theory. 

From the thermodynamic viewpoint, lamellae should 
also tend to thicken and grow three-dimensionally. In the 
lamellar thickening, chain sliding diffusion along the 
chain axis within a lamella should play an important 
role, which is essentially the same as the thickening of a 
nucleus• 

Therefore, it is natural to conclude that nuclear 
thickening and lamellar thickening should correspond 
directly, i.e., when a nucleus can thicken easily, a lamella 
can also thicken easily, while, when a nucleus cannot 
thicken easily, a lamella cannot thicken so easily. In the 
former case, nucleus and lamella will grow two- and 
three-dimensionally, respectively, which will finally give 
rise to the formation of ECC. In the latter case, they will 
grow only one- and two-dimensionally, respectively, 
which will only result in the formation of FCC. 

This is illustrated in Figure 9. When AE©, m is small, a 
thin FCC type nucleus and lamella (Figure9a) will 
thicken and finally grow into a large thick ECC type 
nucleus and lamella (Figure9c). When AEe, . is large, 
the nucleus and lamella cannot thicken and can only 
grow into a big thin FCC type nucleus and lamella 
(Figure 9b). 

Thus, we reach the important conclusion that there 
should be no essential difference betwen FCC and ECC 
in the formation mechanism. This conclusion has recently 
been confirmed by our experimental results for PE 
showing that FCC lamella thicken into ECC lamella by 
remarkable lamellar thickening via chain sliding 
diffusion 7. 

Thus it is sufficient in this paper to clarify conditions 
for two- (one-) dimensional growth of a nucleus to clarify 
the conditions of formation of ECC (FCC). Therefore, 
in this paper, we will regard the growth of a two- (one-) 
dimensional nucleus as the formation of ECC (FCC). 

Transition from ECC to FCC with increase of (x, v) 
We can estimate the average of(o by UI equation (27) 

= (21) 

(~o) is plotted in Figure 10 as a function of (x, v), which 
corresponds to UI Figure 8. From the conclusion in the 
previous section, Figure 10 can be considered to indicate 
a drastic transition from ECC to FCC with increase of 
(x, v). The transition point is seen at (x, v)= (0.57, 0.57), 
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which is smaller than the value shown in UI (0.7, 0.7). 
This indicates that ECC will be obtained for (x, v ) -  ~ 
(0.35, 0.35) and FCC will be obtained for (x, v)~ 
(0.66, 0.66). This result is more natural and reasonable 
than the results in UI, (0, 0) and (1, 1), respectively, 
which were too small and too large, respectively. The 
differences come from the improvement in the average 
of AE m given by equation (18) and the definition of p given 
by equation (19) in this work. 

Origin of FCC and ECC 
Let us now determine the dominant factor in the 

formation of FCC and ECC. In Figure8, j showed a 
sharp maximum for FCC and a broad maximum for 
ECC. We showed earlier that this remarkable difference 
in j is mainly determined by the difference in 
exp[ -  {G./kT+ AE./k(T- T~)}m=x ], the probability of 
passing through the actual maximum barrier of formation 

of a nucleus. This is because, as shown in Figure 7, this 
term shows a fast decrease for FCC and is nearly constant 
for ECC with increase of to, while Ps(to) shows similar 
broad distribution for FCC and ECC. 

The probability exp [ -  {G~/kT+ AE~/k(T- Tg)}max] 
contains two competing factors, the thermodynamic 
factor, GIn, and the kinetic factor, AEm. It is obvious from 
the discussion above that, when AEe,, becomes large, the 
kinetic factor becomes dominant and, when it becomes 
small, the thermodynamic factor becomes dominant. 
Therefore we conclude, as in UI, that, when AE, is small, 
the thermodynamic factor G m will become dominant and 
ECC will be formed by the thermodynamic driving force, 
whereas, when the kinetic factor AE, is large and 
dominant, FCC will be formed. 

Thus we conclude that the origin of ECC and FCC is 
mainly related to the ease or difficulty of chain sliding 
diffusion within crystals (nucleus or lamella). 

Lamellar thickening rate U 
Note that the nucleation rate j given by equation (9) 

or (10) is a net flow of the generalized sequential process. 
Therefore it can be applied to any kinetic problem. It is 
applicable, of course, to formulating the lamellar 
thickening rate U. We have recently applied it 21 and 
succeeded in explaining the remarkable discrete integral 
lamellar thickening observed recently by Barham and 
Keller on isothermal crystallization from the melt on 
pE 22. 

Prediction for formation of ECC and FCC 
It is obvious, as is discussed in UI, that chain sliding 

diffusion is easy in a disordered crystallographic phase 
such as the hexagonal form (including the pseudo- 
hexagonal form) and difficult in an ordered phase such 
as the orthorhombic form, or the monoclinic or triclinic 
forms. 

By coupling this with the conclusion on the origin of 
ECC and FCC reached above, we predict that ECC will 
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be formed by lamellar thickening via chain sliding 
diffusion when polymers crystallize into a disordered 
phase of hexagonal form and that FCC will be formed 
when they crystallize into an ordered phase such as 
orthorhombic or monoclinic where lamellar thickening 
is difficult. This prediction is essentially similar to Bassett 
and Piermarini's suggestion 9. 

We predict more generally that lamellae of any polymer 
will tend to thicken due to the thermodynamic driving 
force if chains can slide to some extent within the solid. 
We also predict that some polymers which crystallize 
from the melt into the hexagonal form will show a 
continuous change from FCC to ECC just with a change 
in crystallization temperature. This prediction has 
recently been confirmed experimentally on polychloro- 
trifluoroethylene and poly(1,4 transbutadiene) 23, which 
supports the conclusion reached above that there should 
be no essential difference between FCC and ECC. 

Comparison with previous theories 
The formulation of j  obtained in this work, equation 

(10), is apparently similar to that given in the theories 
of LH and FT. But there is an essential difference between 
them in the physical meaning of the activation energy 
for diffusion, AE. In both LH theory and FT theory, AE 
indicates activation energy for diffusion of chains within 
the melt or solution, which is denoted in this theory by 
AEs, ~. It is usually much smaller than G*. In this work, 
on the other hand, AE given by equation (18) contains 
both AEs,~ and the topological effect of chain sliding 
diffusion within the solid (nucleus and lamella), AE,,,. 
This work and UI showed that the latter plays an essential 
role in the formation mechanism of FCC and ECC. The 
topological nature of the linear polymer chain is well 
known to play an important part in some problems in 
polymer science, but it has not been taken into account 
in any kinetic theory of nucleation before UI and this 
work. 

Turnbull and Fisher classified AE into two types of 
activation energy for diffusion, one across the phase 
boundary and another within the solid solution, when 
the transformation involves the separation of a phase 
having a different composition 3. AE~,~ corresponds to 
the former in their theory. AE~,m in this theory 
corresponds to the latter, because neither term is the 
activation energy for diffusion across the phase boundary. 
Both terms represent the activation energy within a 
crystal (solid solution, lamella or nucleus). 

The famous previous polymer crystallization theories, 
LH and FT theories, agree roughly (not quantitatively, 
only qualitatively) with the present theory when tr is large 
and chain sliding diffusion is difficult, because in this 
case, the effect of fluctuation of the system will become 
small and a nucleus will grow only one-dimensionally. 
The resemblance between the theories is shown by 
equation (12) in this work as a special case. 

But the assumptions in their theories, attaching of the 
first stem as the first step of a secondary nucleus and its 
one-dimensional growth, do not seem to be natural. The 
generation of a two-dimensional critical nucleus by 
thermal fluctuation and further two-dimensional growth 
due to the thermodynamic driving force may become 
more natural, especially when tr is small and chain sliding 
diffusion is easy, as in the hexagonal form, as has been 
discussed in UI and in this work. 

Point introduced the idea of the opportunity for a 

molecule (here the first stem was assumed) to fold back 
at the end of every stage. The possibility of fold back 
was shown to increase with increasing stern length, by 
which mechanism the so called 61 catastrophe was 
avoided z z. This effect is essentially a kinetic one. UI also 
succeeded in avoiding the 61 catastrophe by introducing 
a kinetic effect of chain sliding diffusion within crystals. 
Both kinetic effects are similar in that they prohibit 
infinite increase of l at any crystallization temperature, 
which should be taken into polymer crystallization 
theory. 

We first stressed in Reference 2 the important effect of 
fluctuation of a nucleus which is caused by chain sliding 
motion within the nucleus and formulated its effect by 
equation (4.2) in Reference 2. UI again stressed the 
important effect of the fluctuation of a nucleus in polymer 
crystallization. The present work also showed the 
importance of fluctuation in the formulation of a~ 
(equation (13)), which indicates that fluctuation becomes 
more important when t~ becomes smaller but is not so 
important for large a. This result for large t7 agrees with 
the conclusion of Hoffman et al. that the effect of the 
roughness of the end surface on the 'effective' or 'kinetic' 
end surface free energy, ae(k), is small for large t724. 

Sadler also stressed the importance of fluctuation and 
proposed an entropic barrier to crystal growth 25. 
Although some essential differences exist between our 
theory and Sadler's, i.e. the former is based on a 
nucleation theory and the latter is not, both theories have 
a similar viewpoint on the importance of fluctuation, 
which needs to be studied further in future to clarify 
polymer crystallization kinetics. 

SUMMARY AND CONCLUSION 

A simple formula was derived for the generalized 
nucleation rate j for a linear sequential process: 

/~=o (kT k(T- T, JI 

It was shown that j is determined by two competing 
factors, a thermodynamic factor Gm and a kinetic factor 
AE,.. 

The nucleation rate j was rewritten as 

j = tlo(kT/h ) exp[ -  {Gm/kT+ AEm/k(T- rg)}max]P s 

This illustrates the simple physical interpretation that j 
is given by a product of two probabilities, the probability 
of passing through the maximum activation barrier of 
formation of a nucleus, exp[-  {Gm/kr+ AEm/k(r- Tg)}max], 
and the survival probability of the nucleus, Ps. 

The free energy for the uneven end surface was derived: 

a c = 1/2{El- kTln(2kT/a)} 

This indicates that the entropic effect due to fluctuation 
of the fold position becomes important when the side 
surface free energy a becomes small. 

The topological nature of linear chains was taken into 
our theory by introducing the activation energy for 
sliding diffusion of chains within a crystal (nucleus or 
lamella), AEc,.,. This nature was revealed to be the most 
essential factor in the formation mechanism of ECC and 
FCC. 

The origin of ECC and FCC was shown to be related 
to the ease or difficulty of chain sliding diffusion within 

466 POLYMER, 1990, Vol 31, March 



Origin of folded- and extended-chain crystals: M. Hikosaka 

a crystal (nucleus or lamella). It was shown that, when 
chain sliding diffusion within a crystal is easy, both 
nucleus and lamella will easily thicken and grow two- and 
three-dimensionally, respectively, which will result in 
formation of ECC. When chain sliding diffusion is 
difficult, nucleus and lamella cannot easily thicken and 
thus they grow only one- and two-dimensionally, which 
will result in formation of FCC. 

It was concluded that there should not be any essential 
difference between FCC and ECC in their formation 
mechanism. 

It was predicted that, when polymers crystallize into 
a disordered phase of hexagonal (or pseudo-hexagonal) 
form, ECC will be formed by lamellar thickening via 
chain sliding diffusion, and that FCC will be formed when 
they crystallize into an ordered phase such as 
orthorhombic, or monoclinic where lamellar thickening 
is difficult. This prediction is essentially similar to Bassett 
and Piermarini's suggestion 9. 

It was also predicted that lamella of any polymer will 
tend to thicken if chains can slide to some extent within 
the crystal. Therefore, some polymers which crystallize 
from the melt into the hexagonal form will show a 
continuous change from FCC to ECC just with a change 
in crystallization temperature. 
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APPENDIX 1 a e FOR UNEVEN END SURFACE 

Let us consider the nucleus shown in Fioure 2b where the 
end surface is uneven. Here we will fix both the stem 
number n and its averaged stem length I. Each stem length 
I i can vary (fluctuate) under the boundary condition 

~ l i=nl=N (A1) 
i = 1  

where i is the number of the stem within a nucleus. Here 
we will simply denote G m by G(N). G(N) is given by 

G(N)= - l n  Z(N) (A2) 

where Z(N) is a partition function defined by 

Z(N)=  ~.~exp[-EN,,({l,})/kT] (A3) 
1 {/i} 

where EN,i({li}) is the energy of formation for a nucleus 
with a set of stems {l~}. {li} indicates a microscopic state 
with a set of stems with lengths 11, 12 . . . . .  l~ . . . . .  l.. 
Here we will divide EN,i({li}) into two terms: 

EN,,({ I,} )= E° (I) + 6gN.i({l~) } (A4) 

where E°(l) is the energy of a nucleus without unevenness 
and 6EN,i({li} ) is the excess energy caused by the 
unevenness. The former is given by 

E°(I) = 2la + nEf -  NAg (A5) 

where Ag is the free energy of fusion given in LH theory. 
Substitution of equation (A4) into (A3) gives 

Z( N) = ~ e x p [ -  E° (l)/k T] ~ e x p [ -  6 EN,,( { li} )/k 7"] 
t {t i} 

(A6) 

If we assume that 1~ varies independently, the second 
summation in (A6) can be approximated as follows: 

n - - 1  

~exp[-bEN,t({l,})/kT]~- H ~ exp(--ablJkT) 
{/i} i = 2 61i = 0 

(2k T/a)" (A7) 

i-1 
V 

Figure 11 D e f i n i t i o n  o f  61 i 
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where 61 i is defined by (see Figure 11) 

61,---II,- l,_ 11 (A8) 

Substitution of equation (A7) into (A6) and combination 
with equation (A5) gives 

Z(N) = ~ exp[ - E°(l)/kT] (2kT/a)" 
l 

= ~ exp[ -- {21a + nEf -- nkTln(2kT/a) - NAg}/kT] 
l 

(A9) 

Therefore we may define a= by the relation 

a, = 1/2{El- kTln(2kT/a)} (A10) 

This is a new formulation of a~ for uneven end surface. 
Then Z(N) becomes 

Z(N) = ~ e x p [ -  EN(l)/kT] (A11) 
l 

where 

EN(I ) = 2la + 2nae + NAg (A12) 

Equation (A12) is a popular formulation which 
corresponds to UI equation (16). 

APPENDIX 2 DEFINITION AND DERIVATION 
OF p 

Let us assume that a nucleus grows from size In = N to 
size (l + dl)(n + dn) = (N + dN), as illustrated in Figure 12, 
where dl, dn and dN are the increases in l, n and N, 
respectively. The probability, p, of finding a repeating 
unit on the end surface is equal to the ratio of the 
increased number of the repeating unit on the end surface 
ndl to the total increased number dN, 

p = ndl/dN (A1 3) 

dN is approximately given by 

dN = ldn + ndl (A14) 

Substitution of equation (A14) into (A13) gives 

p = 1/[1 + (l/n)(dn/dl)] (A15) 

From equation (14), 

dn/dl = n/z(og )l (A16) 

Substitution of equations (A 15) and (14) into (A 1 6) gives 

f[1 + 1/((n + 1)] -1 - 1 <c0~<0 (A17) 
P = ~ [ 2 - c o ]  -1 0<09< 1 

p is illustrated in Figure 13 as a function of co. The figure 
shows that p changes roughly linearly from zero to one 
when the path parameter 09 varies from - i  to 1. p is 
kept constant, if co is constant, during growth. 
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